
COP 4610: Introduction to Operating Systems (Spring 2015)

Chapter 14:  
Protection

Zhi Wang

Florida State University



Content

• Goals of protection  
• Principles of protection 
• Access matrix  
• Access control 
• Capability-based systems  
• Language-based protection



Objectives

• Discuss the principles of protection in a modern computer system 
• Explain how protection domains combined with an access matrix are 

used to specify the resources a process may access 
• Examine capability and language-based protection systems



Goals of Protection

• Protection: ensure that OS object is accessed correctly and only by those 
processes that are allowed to do so 
• computer consists of a collection of objects, in hardware or software 

• each object has a unique name 
• each object can be accessed through a well-defined set of operations 
• e.g., directories and files, keyboard, network…



Principles of Protection

• Guiding principle: principle of least privilege 
• an entity should be given just enough privileges to perform their tasks 

• it limits damage if the entity has a bug, gets abused 
• it can be static (during life of system, during life of process)  
• or dynamic (changed as needed) – domain switching, privilege escalation 

• similar to “need to know”, an concept regarding access to data 
• Privilege management can be coarse-grained or fine-grained 

• coarse-grained is simpler, but less precise 
• e.g., a Unix processes either have the role of the user or the root 

• fine-grained is more complex, higher overhead, but more securer 
• file ACL lists, RBAC (role-based access control) 

• Domain of control can be user, process, procedure



Domain Structure

• Access-right: <object-name, rights-set> 
• rights-set: subset of all valid operations that can be performed on the object  

• Domain is a set of access-rights associated with an subject (entity)



Domain Implementation (UNIX)

• In Unix, domain is based on the user-id 
• Domain can be switched via: 

• password 

• switch user via the su command and his/her password 
• file system (file attribute) 

• executable file with setuid = on 
• when executed, setuid program will assume the user-id of the file owner 
• why it is necessary?  

• command 

• use sudo to executes a command in another domain, if original domain 
has privilege or password given



Domain Implementation (MULTICS)

• Let Di and Dj be any two domain rings, if j < i  Di ⊆ Dj



Multics Benefits and Limits

• Ring structure is more powerful than kernel/user or root/user design 
• It is fairly complex ➠ more overhead 
• It is flexible enough to provide strict least-privilege  

• object accessible in Dj but not in Di, then j must be < i 
• then every segment accessible in Di also accessible in Dj



Access Matrix

• View protection as a matrix (access matrix) 
• rows represent domains 
• columns represent objects 
• access(i, j): set of operations that a process executing in domain i can invoke 

on object j 
• Access control can be discretionary or mandatory 

• DAC: user who creates object can define access column for that object 
• MAC: sys admin determines the access matrix, user cannot modify it



Access Matrix



Use of Access Matrix

• Validation of access right: 
• a process in domain i tries to do “op” on object j 
• “op” is allowed only if access(i, j) contains “op” 

• Access matrix can be expanded to dynamic protection 
• define operations to add, delete access rights 

• owner: return the owner of oi 
• copy: copy op from oi to oj  
• control: di can modify dj access rights 
• transfer: switch from domain di to dj 

• note: copy and owner is applied to an object, control and transfer to domain



Use of Access Matrix

• Access matrix design separates mechanism from policy 
• mechanism  

• kernel provides access-matrix + rules 
• it ensures matrix can only be manipulated by authorized entities 
• kernel strictly enforce the rules 

• policy 

• user define the matrix: who can access what object and in what mode



Access Matrix w/ Switch Rights



Access Matrix with Copy Rights

copy right marked with *; a ! b if d2 copy read to d3 



Access Matrix With Owner Rights

owner right marked with *; owner can change access to object 



Access Matrix w/ Control Rights



Implementation of Access Matrix

• Access matrix is usually a sparse matrix 
• Option 1: global table 

• store ordered triples < domain, object, rights-set > in table 
• need to search the table 
• the table could be large ➠ won’t fit in main memory 

• difficult to group objects (consider an object that all domains can read) 
• Option 2: per-object access list  

• each column implemented as an access list for one object 
• access list: a list of domains with non-empty set of access rights to object



Implementation of Access Matrix
• Option 3: per-domain capability list 

• instead of object-based, capability list is domain based 
• capability list: a list of objects and operations the domain can operate with 

• object represented by its name or address, called a capability 
• capability list associated with a domain, but cannot be changed by it 

• otherwise, the domain can just add the capability to its list… 
• it can only be changed by a trusted entity 

• Option 4: lock-key 
• compromise between access lists and capability lists 
• each object has list of unique bit patterns, called locks 
• each domain as list of unique bit patterns called keys 
• a domain can access a object if it has a key matching one of the locks



Implementation of Access Matrix

• For access matrix 
• each column defines an access-control list for the object: domain, operation        
• each row defines a capability list (like a key): object, operation



Comparison of Implementations

• Many trade-offs to consider: 
• global table is simple, but can be large 
• access lists focus on the object  
• capability lists useful for localizing information for a given process 
• … 

• Most systems use combination of access lists and capabilities 
• first access to an object -> access list searched 
• if allowed, capability created and attached to process 

• additional accesses need not be checked 
• after last access, capability destroyed



Role-based Access Control

• Solaris 10 provides RBAC to implement least privilege 
• a role is a group of (closely) related privileges 
• users assigned roles granting access to privileges and programs 

• enable role via password to gain its privileges 
• roles can be assigned to processes



Role-based Access Control in Solaris 10



Revocation of Access Rights

• Various options to remove the access right of a domain to an object 
• immediate vs. delayed 
• selective vs. general 
• partial vs. total 
• temporary vs. permanent



Protection in Java 2

• Protection is handled by the Java Virtual Machine (JVM) 
• a class is assigned a protection domain when it is loaded by the JVM 
• protection domain indicates what operations the class can/cannot perform 
• if an invoked method requires privilege, the call stack is inspected to for 

access right check



Stack Inspection



End of Chapter 14


